Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A Level

2420U20-1 – **NEW AS**

PHYSICS – Unit 2 Electricity and Light

P.M. THURSDAY, 9 June 2016

1 hour 30 minutes

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	8	
2.	13	
3.	9	
4.	9	
5.	14	
6.	10	
7.	17	
Total	80	

ADDITIONAL MATERIALS

In addition to this paper, you will require a calculator and a Data Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use pencil or gel pen. Do not use correction fluid. Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space use the continuation pages at the back of the booklet taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The total number of marks available for this paper is 80.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded to show all working. Credit is given for correct working even when the final answer is incorrect.

The assessment of the quality of extended response (QER) will take place in Q7(b)(ii).

PMT

JD*(S16-2420U20-1)

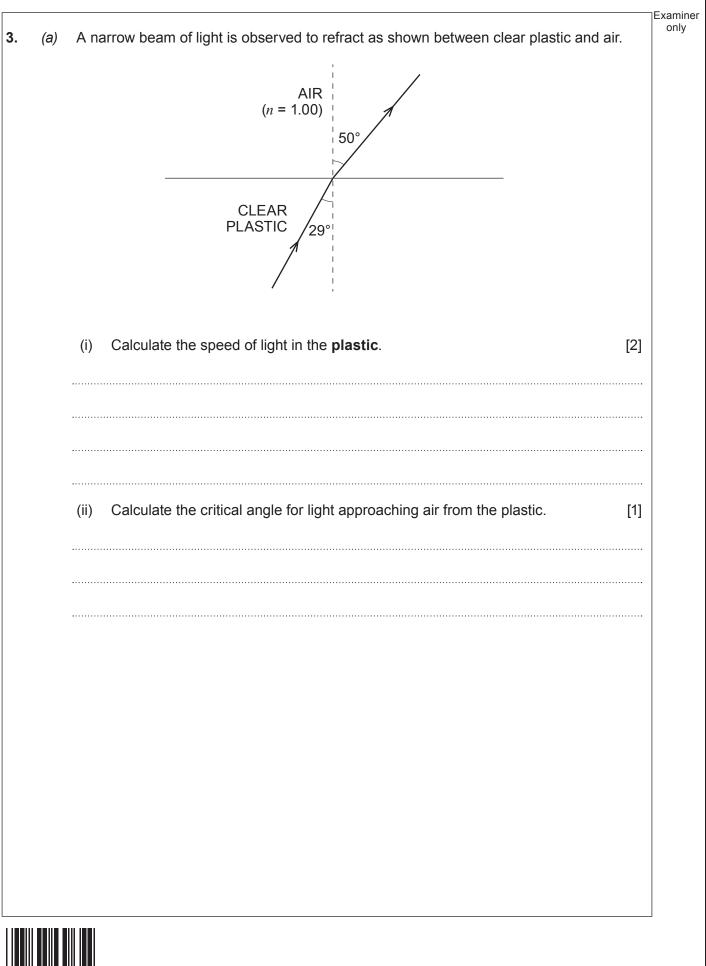
BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

2420U201 03

				Answer all questions		Examine only
1.	pump	ped (b			our-level laser system. Electrons are tate to level P, and drop to U, setting	
	(a)	(i)	Calculate the waveled level L.	ength of radiation emitte	d in the transition from level U to [3]	
		(ii)	Explain how stimulate wavelength.	ed emission enables amp	lification of infra-red radiation of this [3]	
	(b)	Exp	ain the advantage of a	four-level laser system ov	ver a three-level system. [2]	
		······				
	03		© WJEC CBAC Ltd.	(2420U20-1)	Turn over	

4


2.	(a)	(i)	Define the <i>work function</i> of a material. [1	Exan on
		(ii)	 When a potassium surface is irradiated with light of frequency 7.4 × 10¹⁴ Hz, electrons of maximum kinetic energy 1.2 × 10⁻¹⁹ J are ejected at a rate of 2.0 × 10¹⁵ electrons per second. I. Explain, in terms of photons, how, if at all, the maximum kinetic energy of the ejected electrons and their rate of ejection would change if a more intense light of the same frequency were used. [3] 	e
			II. Determine whether or not electrons would be ejected from a potassiun surface by light of frequency 5.1×10^{14} Hz. Give your reasoning. [4	 n]

2420U201 05

(i)	Derive an expression for the number of photons, N, striking the surface per second,
	in terms of P , λ , h and c . [2]
(ii)	Hence derive an expression for the momentum change per second of the light when it strikes the surface. [2]
(iii)	A student suggests that the answer to (ii) gives the <i>pressure</i> that the light exerts on the surface. What <i>should</i> she have said instead of <i>pressure</i> ? [1]

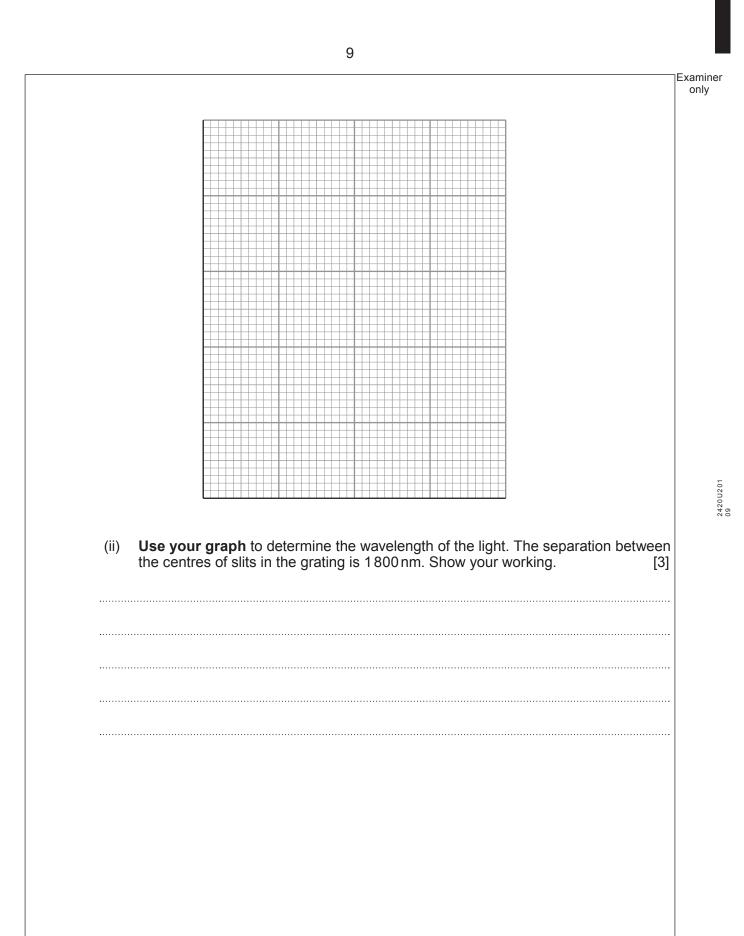
© WJEC CBAC Ltd.

06

2420U201 07

<i>(b</i>)	The	diagram shows light heing transmitted along a multimode fibre, at the greatest angle	Examine only
(b)	to th	e diagram shows light being transmitted along a multimode fibre, at the greatest angle he axis for successful transmission.	
		axis9.0°	
	>		
	1	core $(n = 1.530)$ cladding	
		core (<i>n</i> = 1.530) Cladding NOT TO SCALE	
	(i)	The refractive index of the core is 1.530. Calculate the refractive index of the	
	(י)	cladding. [2]	
	•••••		
	 (ii)	Show that the zigzag route in the diagram is 1.0125 times longer than a straight path	
	()	through the same length of fibre. [1]	
	•••••		
	 (iii)	The difference in times of travel for a data pulse by these two extreme routes is	
	()	required to be no more than 7.5 ns. Determine whether or not 150 m of fibre will be too long. Set out your reasoning clearly. [3]	
	•••••		
	•••••		
	·····		
	•••••		

(a)	Explain in clear steps why	bright beams emer	ge from the grating	at angles, <i>θ</i> , to th	ne
	normal given by the equation	n: $d\sin\theta = n\lambda$			3]
		$u \sin v - m$		[0	01
 	The angles, <i>θ</i> , at which the I	bright beams emerge	e are given in the tab	ble below.	
 b)	The angles, θ , at which the I	bright beams emerge	e are given in the tab	ble below.	


0	0	
1	16	
2	35	
3	58	

Plot a graph of sin θ (y-axis) against *n* (x-axis) on the grid provided.

[3]

(i)

(a)	Define the <i>potential difference</i> between two points in an electric circuit. [2		
(b)	A cell of emf 1.62 V and internal resistance, r, is included in the circuit shown. Image: state in the image: state in t		
	 (iii) 750 J of the cell's energy is dissipated in total while the switch is closed. Calculate the time for which the switch is closed. [2] 		

Examiner only Calculate the voltmeter reading when the 1.50 Ω resistor is replaced by a 0.75 Ω (iv) resistor, and the switch is closed. [2] The circuit shown includes a light-dependent resistor (LDR), whose resistance decreases (C) as the intensity of light falling on it increases. A 6.0V supply of negligible internal resistance is used. LDR 6.0V **200**Ω Calculate the voltmeter reading when the resistance of the LDR is 850Ω and the (i) switch is closed. [2] (ii) Explain, in clear steps, whether the voltmeter reading will increase or decrease when the intensity of light is increased. [2]

			Examiner
6.	(a)	In the set-up shown a series of <i>antinodes</i> is detected, at the following distances from the metal plate: 8 mm, 24 mm, 40 mm, 56 mm, 72 mm.	only
		P metal plate NOT TO SCALE	
		(i) Referring to the diagram, explain in terms of <i>interference</i> how an antinode is produced. [2]	
		 (ii) From the data, determine whether there is a node or an antinode at point P (on the metal plate). Give your reasoning in terms of wavelength. [2] 	

a pr	ogressive wave.
Α	-0.30 m
 Direc	tion of travel of wave
(i) 	State the phase relationship between the displacements at A and B , then determine the longest, and the second longest, wavelength that the wave could have. [3]
	The speed of the waves is known to be between 10 m s^{-1} and 15 m s^{-1} . Determine which of the two wavelengths in <i>(b)</i> (i) is the correct one, giving your reasoning. [3]

(2)								E
(a)	(i)	Draw the circuit of lamp varies with	diagram for the applied	an investig potential d	ation of how	the current	through a filar	ment [2]
	(ii)	The lamp is labe	elled "3V, 0	.16 A". The	ammeter to	be used is a	a multimeter w	ith a
		0 – 200 mA range justify your choic		TOA Tange.		range snou	iu de Selecieu,	[1]
	(iii)	The lamp has alr reproduced belov						
		could have been		, -				[2]
	•••••							
0								
	urren							
	0.15					€		
	0.15			*	****			
	0.15			~****	****			
	-							
	-							
	- 0.10 - -							

)	(i)	Use the graph to calculate the ratio: Resistance of lamp at 2.00 V Resistance of lamp at 0.50 V [3]				
-						
	(ii)	Explain, in terms of free electrons, why the temperature and the resistance of a metal wire increase when the potential difference across the wire is increased. [6 QER]				
	•••••					
	TURN OVER FOR THE LAST PART OF THE QUESTION					

A scientist claims to have made a material which is superconducting at room temperature. He publishes his procedure. Several research teams try to follow the same procedure, but without success. Discuss the arguments for and against spending more public money following up the scientist's claim. [3]
END OF PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		7

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

